Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts.

نویسندگان

  • C Shayakul
  • A Steel
  • M A Hediger
چکیده

Absorption of urea in the renal inner medullary collecting duct (IMCD) contributes to hypertonicity in the medullary interstitium which, in turn, provides the osmotic driving force for water reabsorption. This mechanism is regulated by vasopressin via a cAMP-dependent pathway and activation of a specialized urea transporter located in the apical membrane. We report here the cloning of a novel urea transporter, designated UT1, from the rat inner medulla which is functionally and structurally distinct from the previously reported kidney urea transporter UT2. UT1 expressed in Xenopus oocytes mediated passive transport of urea that was inhibited by phloretin and urea analogs but, in contrast to UT2, was strongly stimulated by cAMP agonists. Sequence comparison revealed that the coding region of UT1 cDNA contains the entire 397 amino acid residue coding region of UT2 and an additional 1,596 basepair-stretch at the 5' end. This stretch encodes a novel 532 amino acid residue NH2-terminal domain that has 67% sequence identity with UT2. Thus, UT1 consists of two internally homologous portions that have most likely arisen by gene duplication. Studies of the rat genomic DNA further indicated that UT1 and UT2 are derived from a single gene by alternative splicing. Based on Northern analysis and in situ hybridization, UT1 is expressed exclusively in the IMCD, particularly in its terminal portion. Taken together, our data show that UT1 corresponds to the previously characterized vasopressin-regulated urea transporter in the apical membrane of the terminal IMCD which plays a critical role in renal water conservation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and subcellular localization of the vasopressin- regulated urea transporter in rat kidney.

The renal urea transporter (RUT) is responsible for urea accumulation in the renal medulla, and consequently plays a central role in the urinary concentrating mechanism. To study its cellular and subcellular localization, we prepared affinity-purified, peptide-derived polyclonal antibodies against rat RUT based on the cloned cDNA sequence. Immunoblots using membrane fractions from rat renal inn...

متن کامل

Role of protein kinase C-α in hypertonicity-stimulated urea permeability in mouse inner medullary collecting ducts.

The kidney's ability to concentrate urine is vitally important to our quality of life. In the hypertonic environment of the kidney, urea transporters must be regulated to optimize function. We previously showed that hypertonicity increases urea permeability and that the protein kinase C (PKC) blockers chelerythrine and rottlerin decreased hypertonicity-stimulated urea permeability in rat inner ...

متن کامل

Urea transport in MDCK cells that are stably transfected with UT-A1.

Progress in understanding the cell biology of urea transporter proteins has been hampered by the lack of an appropriate cell culture system. The goal of this study was to create a polarized epithelial cell line that stably expresses the largest of the rat renal urea transporter UT-A isoforms, UT-A1. The gene for UT-A1 was cloned into pcDNA5/FRT and transfected into Madin-Darby canine kidney (MD...

متن کامل

Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts.

In the terminal part of the kidney collecting duct, rapid urea reabsorption is essential to maintaining medullary hypertonicity, allowing maximal urinary concentration to occur. This process is mediated by facilitated urea transporters on both apical and basolateral membranes. Our previous studies have identified three rat urea transporters involved in the urinary concentrating mechanism, UT1, ...

متن کامل

An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts.

We have shown that urea transport across the terminal inner medullary collecting duct (terminal IMCD) is mediated by a vasopressin-stimulated, facilitated diffusion process exhibiting properties consistent with a transporter. To investigate whether hypertonic NaCl, as exists in vivo in the inner medulla, affects urea permeability, we studied isolated perfused rat terminal IMCD segments. Perfusa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 98 11  شماره 

صفحات  -

تاریخ انتشار 1996